On variance stabilisation in Population Monte Carlo by double Rao-Blackwellisation
Alessandra Iacobucci,
Jean-Michel Marin and
Christian Robert
Computational Statistics & Data Analysis, 2010, vol. 54, issue 3, 698-710
Abstract:
Population Monte Carlo has been introduced as a sequential importance sampling technique to overcome poor fit of the importance function. The performance of the original Population Monte Carlo algorithm is compared with a modified version that eliminates the influence of the transition particle via a double Rao-Blackwellisation. This modification is shown to improve the exploration of the modes through a large simulation experiment on posterior distributions of mean mixtures of distributions.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00448-9
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:3:p:698-710
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().