GAP: A graphical environment for matrix visualization and cluster analysis
Han-Ming Wu,
Yin-Jing Tien and
Chun-houh Chen
Computational Statistics & Data Analysis, 2010, vol. 54, issue 3, 767-778
Abstract:
GAP is a Java-designed exploratory data analysis (EDA) software for matrix visualization (MV) and clustering of high-dimensional data sets. It provides direct visual perception for exploring structures of a given data matrix and its corresponding proximity matrices, for variables and subjects. Various matrix permutation algorithms and clustering methods with validation indices are implemented for extracting embedded information. GAP has a friendly graphical user interface for easy handling of data and proximity matrices. It is more powerful and effective than conventional graphical methods when dimension reduction techniques fail or when data is of ordinal, binary, and nominal type.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00434-9
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:3:p:767-778
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().