Unified generalized iterative scaling and its applications
Wei Gao,
Ning-Zhong Shi,
Man-Lai Tang,
Lianyan Fu and
Guoliang Tian
Computational Statistics & Data Analysis, 2010, vol. 54, issue 4, 1066-1078
Abstract:
Generalized iterative scaling (GIS) has become a popular method for getting the maximum likelihood estimates for log-linear models. It is basically a sequence of successive I-projections onto sets of probability vectors with some given linear combinations of probability vectors. However, when a sequence of successive I-projections are applied onto some closed and convex sets (e.g., marginal stochastic order), they may not lead to the actual solution. In this manuscript, we present a unified generalized iterative scaling (UGIS) and the convergence of this algorithm to the optimal solution is shown. The relationship between the UGIS and the constrained maximum likelihood estimation for log-linear models is established. Applications to constrained Poisson regression modeling and marginal stochastic order are used to demonstrate the proposed UGIS.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00398-3
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:4:p:1066-1078
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().