Robust smoothing of gridded data in one and higher dimensions with missing values
Damien Garcia
Computational Statistics & Data Analysis, 2010, vol. 54, issue 4, 1167-1178
Abstract:
A fully automated smoothing procedure for uniformly sampled datasets is described. The algorithm, based on a penalized least squares method, allows fast smoothing of data in one and higher dimensions by means of the discrete cosine transform. Automatic choice of the amount of smoothing is carried out by minimizing the generalized cross-validation score. An iteratively weighted robust version of the algorithm is proposed to deal with occurrences of missing and outlying values. Simplified Matlab codes with typical examples in one to three dimensions are provided. A complete user-friendly Matlab program is also supplied. The proposed algorithm, which is very fast, automatic, robust and requiring low storage, provides an efficient smoother for numerous applications in the area of data analysis.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00349-1
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:4:p:1167-1178
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().