Model selection with the Loss Rank Principle
Marcus Hutter and
Minh-Ngoc Tran
Computational Statistics & Data Analysis, 2010, vol. 54, issue 5, 1288-1306
Abstract:
A key issue in statistics and machine learning is to automatically select the "right" model complexity, e.g., the number of neighbors to be averaged over in k nearest neighbor () regression or the polynomial degree in regression with polynomials. We suggest a novel principle-the Loss Rank Principle (LoRP)-for model selection in regression and classification. It is based on the loss rank, which counts how many other (fictitious) data would be fitted better. LoRP selects the model that has minimal loss rank. Unlike most penalized maximum likelihood variants (AIC, BIC, MDL), LoRP depends only on the regression functions and the loss function. It works without a stochastic noise model, and is directly applicable to any non-parametric regressor, like .
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00426-5
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:5:p:1288-1306
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().