Data-driven neighborhood selection of a Gaussian field
Nicolas Verzelen
Computational Statistics & Data Analysis, 2010, vol. 54, issue 5, 1355-1371
Abstract:
The nonparametric covariance estimation of a stationary Gaussian field X observed on a lattice is investigated. To tackle this issue, a neighborhood selection procedure has been recently introduced. This procedure amounts to selecting a neighborhood by a penalization method and estimating the covariance of X in the space of Gaussian Markov random fields (GMRFs) with neighborhood . Such a strategy is shown to satisfy oracle inequalities as well as minimax adaptive properties. However, it suffers several drawbacks which make the method difficult to apply in practice: the penalty depends on some unknown quantities and the procedure is only defined for toroidal lattices. The contribution is threefold. Firstly, a data-driven algorithm is proposed for tuning the penalty function. Secondly, the procedure is extended to non-toroidal lattices. Thirdly, numerical study illustrates the performances of the method on simulated examples. These simulations suggest that Gaussian Markov random field selection is often a good alternative to variogram estimation.
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00439-3
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:5:p:1355-1371
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().