EconPapers    
Economics at your fingertips  
 

Pattern recognition via projection-based kNN rules

Ricardo Fraiman, Ana Justel and Marcela Svarc

Computational Statistics & Data Analysis, 2010, vol. 54, issue 5, 1390-1403

Abstract: A new procedure for pattern recognition is introduced based on the concepts of random projections and nearest neighbors. It can be considered as an improvement of the classical nearest neighbor classification rules. Besides the concept of neighbors, the notion of district, a larger set into which the data will be projected, is introduced. Then a one-dimensional kNN method is applied to the projected data on randomly selected directions. This method, which is more accurate to handle high-dimensional data, has some robustness properties. The procedure is also universally consistent. Moreover, the method is challenged with the Isolet data set where a very high classification score is obtained.

Keywords: High-dimensional; data; kNN; rules; Pattern; recognition; Robustness (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00461-7
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:5:p:1390-1403

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:54:y:2010:i:5:p:1390-1403