Pattern recognition via projection-based kNN rules
Ricardo Fraiman,
Ana Justel and
Marcela Svarc
Computational Statistics & Data Analysis, 2010, vol. 54, issue 5, 1390-1403
Abstract:
A new procedure for pattern recognition is introduced based on the concepts of random projections and nearest neighbors. It can be considered as an improvement of the classical nearest neighbor classification rules. Besides the concept of neighbors, the notion of district, a larger set into which the data will be projected, is introduced. Then a one-dimensional kNN method is applied to the projected data on randomly selected directions. This method, which is more accurate to handle high-dimensional data, has some robustness properties. The procedure is also universally consistent. Moreover, the method is challenged with the Isolet data set where a very high classification score is obtained.
Keywords: High-dimensional; data; kNN; rules; Pattern; recognition; Robustness (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00461-7
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:5:p:1390-1403
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().