Accurate estimation with one order statistic
Andrew G. Glen
Computational Statistics & Data Analysis, 2010, vol. 54, issue 6, 1434-1441
Abstract:
Estimating parameters from certain survival distributions is shown to suffer little loss of accuracy in the presence of left censoring. The variance of maximum likelihood estimates (MLE) in the presence of type II right-censoring is almost un-degraded if there also is heavy left-censoring when estimating certain parameters. In fact, if only a single data point, the rth recorded failure time, is available, the MLE estimates using the one data point are similar in variance to the estimates using all r failure points for all but the most extreme values of r. Analytic results are presented for the case of the exponential and Rayleigh distributions, to include the exact distributions of the estimators for the parameters. Simulated results are also presented for the gamma distribution. Implications in life test design and cost savings are explained as a result. Also computational considerations for finding analytic results as well as simulated results in a computer algebra system are discussed.
Keywords: Order; statistics; Maximum; likelihood; Type; II; right; censoring; Computational; probability (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00027-7
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:6:p:1434-1441
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().