Optimized fixed-size kernel models for large data sets
K. De Brabanter,
J. De Brabanter,
J.A.K. Suykens and
B. De Moor
Computational Statistics & Data Analysis, 2010, vol. 54, issue 6, 1484-1504
Abstract:
A modified active subset selection method based on quadratic Rényi entropy and a fast cross-validation for fixed-size least squares support vector machines is proposed for classification and regression with optimized tuning process. The kernel bandwidth of the entropy based selection criterion is optimally determined according to the solve-the-equation plug-in method. Also a fast cross-validation method based on a simple updating scheme is developed. The combination of these two techniques is suitable for handling large scale data sets on standard personal computers. Finally, the performance on test data and computational time of this fixed-size method are compared to those for standard support vector machines and [nu]-support vector machines resulting in sparser models with lower computational cost and comparable accuracy.
Keywords: Kernel; methods; Least; squares; support; vector; machines; Classification; Regression; Plug-in; estimate; Entropy; Cross-validation (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00039-3
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:6:p:1484-1504
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().