A control chart based on likelihood ratio test for detecting patterned mean and variance shifts
Qin Zhou,
Yunzhao Luo and
Zhaojun Wang
Computational Statistics & Data Analysis, 2010, vol. 54, issue 6, 1634-1645
Abstract:
Control charts based on generalized likelihood ratio test (GLRT) are attractive from both theoretical and practical points of view. Most of the existing works in the literature focusing on the detection of the process mean and variance are almost based on the assumption that the shifts remain constant over time. The case of the patterned mean and variance changes may not be well discussed. In this research, we propose a new control chart which integrates the exponentially weighted moving average (EWMA) procedure with the GLRT statistics to monitor the process with patterned mean and variance shifts. The attractive advantage of our control chart is its reference-free property. Due to the good properties of GLRT and EWMA procedures, our simulation results show that the proposed chart provides quite effective and robust detecting ability for various types of shifts. The implementation of our proposed control chart is illustrated by a real data example from chemical process control.
Keywords: Generalized; likelihood; ratio; test; Average; run; length; EWMA; Statistical; process; control; Patterned; shifts (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00035-6
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:6:p:1634-1645
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().