Distance-based tree models for ranking data
Paul H. Lee and
Philip Yu
Computational Statistics & Data Analysis, 2010, vol. 54, issue 6, 1672-1682
Abstract:
Ranking data has applications in different fields of studies, like marketing, psychology and politics. Over the years, many models for ranking data have been developed. Among them, distance-based ranking models, which originate from the classical rank correlations, postulate that the probability of observing a ranking of items depends on the distance between the observed ranking and a modal ranking. The closer to the modal ranking, the higher the ranking probability is. However, such a model basically assumes a homogeneous population and does not incorporate the presence of covariates. To overcome these limitations, we combine the strength of a tree model and the existing distance-based models to build a model that can handle more complexity and improve prediction accuracy. We will introduce a recursive partitioning algorithm for building a tree model with a distance-based ranking model fitted at each leaf. We will also consider new weighted distance measures which allow different weights for different ranks in formulating more flexible distance-based tree models. Finally, we will apply the proposed methodology to analyze a ranking dataset of Inglehart's items collected in the 1999 European Values Studies.
Keywords: Decision; tree; Ranking; data; Distance-based; model (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (16)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00042-3
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:6:p:1672-1682
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().