A clipped latent variable model for spatially correlated ordered categorical data
Megan Dailey Higgs and
Jennifer A. Hoeting
Computational Statistics & Data Analysis, 2010, vol. 54, issue 8, 1999-2011
Abstract:
We propose a model for a point-referenced spatially correlated ordered categorical response and methodology for inference. Models and methods for spatially correlated continuous response data are widespread, but models for spatially correlated categorical data, and especially ordered multi-category data, are less developed. Bayesian models and methodology have been proposed for the analysis of independent and clustered ordered categorical data, and also for binary and count point-referenced spatial data. We combine and extend these methods to describe a Bayesian model for point-referenced (as opposed to lattice) spatially correlated ordered categorical data. We include simulation results and show that our model offers superior predictive performance as compared to a non-spatial cumulative probit model and a more standard Bayesian generalized linear spatial model. We demonstrate the usefulness of our model in a real-world example to predict ordered categories describing stream health within the state of Maryland.
Keywords: Bayesian; Ordinal; Benthic; IBI; Generalized; linear; mixed; models (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00089-7
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:8:p:1999-2011
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().