Bayesian classification for bivariate normal gene expression
Sandra Ramos,
Antónia Amaral Turkman and
Marília Antunes
Computational Statistics & Data Analysis, 2010, vol. 54, issue 8, 2012-2020
Abstract:
A Bayesian optimal screening method (BOSc) is proposed to classify an individual into one of two groups, based on the observation of pairs of covariates, namely the expression level of pairs of genes (previously selected by a specific method, among the thousands of genes present in the microarray) measured using DNA microarrays technology. The method is general and can be applied to any correlated pair of screening variables, either with a bivariate normal distribution or which can be transformed into a bivariate normal.1 Results on microarray data sets (Leukemia, Prostate and Breast) show that BOSc performance is competitive with, and in some cases significantly better than, quadratic and linear discriminant analyses and support vector machines classifiers. BOSc provides flexible parametric decision rules. Finally, the screening classifier allows the calculation of operating characteristics while addressing information about the prevalence of the disease or type of disease, which is an advantage over other classification methods.
Keywords: Bayesian; screening; methods; Classification; Decision; rule; Gene; expression; arrays; data (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00091-5
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:8:p:2012-2020
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().