Small area estimation using a nonparametric model-based direct estimator
Nicola Salvati,
Hukum Chandra,
M. Giovanna Ranalli and
Ray Chambers
Computational Statistics & Data Analysis, 2010, vol. 54, issue 9, 2159-2171
Abstract:
Nonparametric regression is widely used as a method of characterizing a non-linear relationship between a variable of interest and a set of covariates. Practical application of nonparametric regression methods in the field of small area estimation is fairly recent, and has so far focussed on the use of empirical best linear unbiased prediction under a model that combines a penalized spline (p-spline) fit and random area effects. The concept of model-based direct estimation is used to develop an alternative nonparametric approach to estimation of a small area mean. The suggested estimator is a weighted average of the sample values from the area, with weights derived from a linear regression model with random area effects extended to incorporate a smooth, nonparametrically specified trend. Estimation of the mean squared error of the proposed small area estimator is also discussed. Monte Carlo simulations based on both simulated and real datasets show that the proposed model-based direct estimator and its associated mean squared error estimator perform well. They are worth considering in small area estimation applications where the underlying population regression relationships are non-linear or have a complicated functional form.
Keywords: Non-linear; regression; model; Empirical; best; linear; unbiased; prediction; Penalized; splines; Mean; squared; error; estimator; Unit; level; model (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00125-8
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:54:y:2010:i:9:p:2159-2171
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().