EconPapers    
Economics at your fingertips  
 

Iterative stepwise regression imputation using standard and robust methods

Matthias Templ, Alexander Kowarik and Peter Filzmoser

Computational Statistics & Data Analysis, 2011, vol. 55, issue 10, 2793-2806

Abstract: Imputation of missing values is one of the major tasks for data pre-processing in many areas. Whenever imputation of data from official statistics comes into mind, several (additional) challenges almost always arise, like large data sets, data sets consisting of a mixture of different variable types, or data outliers. The aim is to propose an automatic algorithm called IRMI for iterative model-based imputation using robust methods, encountering for the mentioned challenges, and to provide a software tool in R. This algorithm is compared to the algorithm IVEWARE, which is the "recommended software" for imputations in international and national statistical institutions. Using artificial data and real data sets from official statistics and other fields, the advantages of IRMI over IVEWARE-especially with respect to robustness-are demonstrated.

Keywords: Regression; imputation; Robustness; R (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311001411
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:10:p:2793-2806

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:10:p:2793-2806