Scale space multiresolution analysis of random signals
Lasse Holmström,
Leena Pasanen,
Reinhard Furrer and
Stephan R. Sain
Computational Statistics & Data Analysis, 2011, vol. 55, issue 10, 2840-2855
Abstract:
A method to capture the scale-dependent features in a random signal is proposed with the main focus on images and spatial fields defined on a regular grid. A technique based on scale space smoothing is used. However, while the usual scale space analysis approach is to suppress detail by increasing smoothing progressively, the proposed method instead considers differences of smooths at neighboring scales. A random signal can then be represented as a sum of such differences, a kind of a multiresolution analysis, each difference representing details relevant at a particular scale or resolution. Bayesian analysis is used to infer which details are credible and which are just artifacts of random variation. The applicability of the method is demonstrated using noisy digital images as well as global temperature change fields produced by numerical climate prediction models.
Keywords: Scale; space; smoothing; Bayesian; methods; Image; analysis; Climate; research (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731100140X
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:10:p:2840-2855
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().