EconPapers    
Economics at your fingertips  
 

Semiparametric regression with shape-constrained penalized splines

Martin L. Hazelton and Berwin A. Turlach

Computational Statistics & Data Analysis, 2011, vol. 55, issue 10, 2871-2879

Abstract: In semiparametric regression models, penalized splines can be used to describe complex, non-linear relationships between the mean response and covariates. In some applications it is desirable to restrict the shape of the splines so as to enforce properties such as monotonicity or convexity on regression functions. We describe a method for imposing such shape constraints on penalized splines within a linear mixed model framework. We employ Markov chain Monte Carlo (MCMC) methods for model fitting, using a truncated prior distribution to impose the requisite shape restrictions. We develop a computationally efficient MCMC sampler by using a correspondingly truncated multivariate normal proposal distribution, which is a restricted version of the approximate sampling distribution of the model parameters in an unconstrained version of the model. We also describe a cheap approximation to this methodology that can be applied for shape-constrained scatterplot smoothing. Our methods are illustrated through two applications, the first involving the length of dugongs and the second concerned with growth curves for sitka spruce trees.

Keywords: Linear; mixed; model; MCMC; Shape; constraint; Spline; Truncated; multivariate; normal (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311001472
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:10:p:2871-2879

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:10:p:2871-2879