EconPapers    
Economics at your fingertips  
 

Approximate inference of the bandwidth in multivariate kernel density estimation

Maurizio Filippone and Guido Sanguinetti

Computational Statistics & Data Analysis, 2011, vol. 55, issue 12, 3104-3122

Abstract: Kernel density estimation is a popular and widely used non-parametric method for data-driven density estimation. Its appeal lies in its simplicity and ease of implementation, as well as its strong asymptotic results regarding its convergence to the true data distribution. However, a major difficulty is the setting of the bandwidth, particularly in high dimensions and with limited amount of data. An approximate Bayesian method is proposed, based on the Expectation-Propagation algorithm with a likelihood obtained from a leave-one-out cross validation approach. The proposed method yields an iterative procedure to approximate the posterior distribution of the inverse bandwidth. The approximate posterior can be used to estimate the model evidence for selecting the structure of the bandwidth and approach online learning. Extensive experimental validation shows that the proposed method is competitive in terms of performance with state-of-the-art plug-in methods.

Keywords: Kernel; density; estimation; Bayesian; inference; Expectation; propagation; Multivariate; analysis (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311002088
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:12:p:3104-3122

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3104-3122