Structural learning for Bayesian networks by testing complete separators in prime blocks
Ping-Feng Xu,
Jianhua Guo and
Man-Lai Tang
Computational Statistics & Data Analysis, 2011, vol. 55, issue 12, 3135-3147
Abstract:
In this paper, we consider how to recover the structure of a Bayesian network from a moral graph. We present a more accurate characterization of moral edges, based on which a complete subset (i.e., a separator) contained in the neighbor set of one vertex of the putative moral edge in some prime block of the moral graph can be chosen. This results in a set of separators needing to be searched generally smaller than the sets required by some existing algorithms. A so-called structure-finder algorithm is proposed for structural learning. The complexity analysis of the proposed algorithm is discussed and compared with those for several existing algorithms. We also demonstrate how to construct the moral graph locally from, separately, the Markov blanket, domain knowledge and d-separation trees. Simulation studies are used to evaluate the performances of various strategies for structural learning. We also analyze a gene expression data set by using the structure-finder algorithm.
Keywords: Bayesian; network; Complete; separator; Conditional; independence; Moral; edge; Prime; block; Structural; learning (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311002209
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:12:p:3135-3147
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().