EconPapers    
Economics at your fingertips  
 

One-step minimum Hellinger distance estimation

Rohana J. Karunamuni and Jingjing Wu

Computational Statistics & Data Analysis, 2011, vol. 55, issue 12, 3148-3164

Abstract: It is well known now that the minimum Hellinger distance estimation approach introduced by Beran (Beran, R., 1977. Minimum Hellinger distance estimators for parametric models. Ann. Statist. 5, 445-463) produces estimators that achieve efficiency at the model density and simultaneously have excellent robustness properties. However, computational difficulties and algorithmic convergence problems associated with this method have hampered its application in practice, particularly when the method is applied to models with high-dimensional parameter spaces. A one-step minimum Hellinger distance (MHD) procedure is investigated in this paper to overcome computational drawbacks of the fully iterative MHD method. The idea is to start with an initial estimator, and then iterate the Newton-Raphson equation once related to the Hellinger distance. The resulting estimator can be considered a one-step MHD estimator. We show that the proposed one-step MHD estimator has the same asymptotic behavior as the MHD estimator, as long as the initial estimators are reasonably good. Furthermore, our theoretical and numerical studies also demonstrate that the proposed one-step MHD estimator also retains excellent robustness properties of the MHD estimators. A real data example is analyzed as well.

Keywords: Hellinger; distance; One-step; estimators; Asymptotic; efficiency; Robust; statistics; Asymptotic; normality (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311002465
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:12:p:3148-3164

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3148-3164