Bayesian inference for an item response model for modeling test anxiety
C.Q. da-Silva and
A.E. Gomes
Computational Statistics & Data Analysis, 2011, vol. 55, issue 12, 3165-3182
Abstract:
We develop a Bayesian binary Item Response Model (IRM), which we denote as Test Anxiety Model (TAM), for estimating the proficiency scores when individuals might experience test anxiety. We consider order restricted item parameters conditionally to the examinees' reported emotional state at the testing session. We consider three test anxiety levels: calm, anxious and very anxious. Using simulated data we show that taking into account test anxiety levels in an IRM help us to obtain fair proficiency estimates as opposed to the ones obtained with three two-parameter logistic IRM (3PM) by Birnbaum (1957, 1968). For the 3PM, the proficiency estimates tend to be positively biased for both, calm and anxious examinees.
Keywords: Item; response; theory; Test; anxiety; Bayesian; analysis (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311001824
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:12:p:3165-3182
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().