Variational Bayesian methods for spatial data analysis
Qian Ren,
Sudipto Banerjee,
Andrew O. Finley and
James S. Hodges
Computational Statistics & Data Analysis, 2011, vol. 55, issue 12, 3197-3217
Abstract:
With scientific data available at geocoded locations, investigators are increasingly turning to spatial process models for carrying out statistical inference. However, fitting spatial models often involves expensive matrix decompositions, whose computational complexity increases in cubic order with the number of spatial locations. This situation is aggravated in Bayesian settings where such computations are required once at every iteration of the Markov chain Monte Carlo (MCMC) algorithms. In this paper, we describe the use of Variational Bayesian (VB) methods as an alternative to MCMC to approximate the posterior distributions of complex spatial models. Variational methods, which have been used extensively in Bayesian machine learning for several years, provide a lower bound on the marginal likelihood, which can be computed efficiently. We provide results for the variational updates in several models especially emphasizing their use in multivariate spatial analysis. We demonstrate estimation and model comparisons from VB methods by using simulated data as well as environmental data sets and compare them with inference from MCMC.
Keywords: Bayesian; inference; Gaussian; process; Hierarchical; models; Markov; chain; Monte; Carlo; Spatial; process; models; Variational; Bayesian (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311002003
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:12:p:3197-3217
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().