Repeated measures analysis for functional data
Pablo Martínez-Camblor and
Norberto Corral
Computational Statistics & Data Analysis, 2011, vol. 55, issue 12, 3244-3256
Abstract:
Most of the traditional statistical methods are being adapted to the Functional Data Analysis (FDA) context. The repeated measures analysis which deals with the k-sample problem when the data are from the same subjects is investigated. Both the parametric and the nonparametric approaches are considered. Asymptotic, permutation and bootstrap approximations for the statistic distribution are developed. In order to explore the statistical power of the proposed methods in different scenarios, a Monte Carlo simulation study is carried out. The results suggest that the studied methodology can detect small differences between curves even with small sample sizes.
Keywords: Repeated; measure; Functional; data; analysis; Paired; design; Bootstrap; method (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311002106
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:12:p:3244-3256
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().