EconPapers    
Economics at your fingertips  
 

Symmetric circular models through duplication and cosine perturbation

Toshihiro Abe and Arthur Pewsey

Computational Statistics & Data Analysis, 2011, vol. 55, issue 12, 3271-3282

Abstract: Models for circular data displaying two diametrically opposed modes are considered. A general construction which can be used to generate such models, founded upon doubling the argument of a base symmetric unimodal distribution and cosine perturbation, is proposed. Fundamental properties of the resulting models are described, as are those of a particularly flexible family of distributions and three of its submodels. Parameter estimation via the method of moments and maximum likelihood is discussed, and a likelihood-ratio test for antipodal symmetry developed. The application of the proposed models and inferential methods is illustrated using two animal orientation data sets.

Keywords: Animal; orientation; Antipodal; symmetry; Bipolar; Generalised; von; Mises; Perturbation; von; Mises; mixture (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S016794731100212X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:12:p:3271-3282

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3271-3282