On the performance of some non-parametric estimators of the conditional survival function with interval-censored data
Mohammad Hossein Dehghan and
Thierry Duchesne
Computational Statistics & Data Analysis, 2011, vol. 55, issue 12, 3355-3364
Abstract:
Simple nonparametric estimators of the conditional distribution of a response variable given a continuous covariate are often useful in survival analysis. Since a few nonparametric estimation options are available, a comparison of the performance of these options may be of value to determine which approach to use in a given application. In this note, we compare various nonparametric estimators of the conditional survival function when the response is subject to interval- and right-censoring. The estimators considered are a generalization of Turnbull's estimator proposed by Dehghan and Duchesne (2011) and two nonparametric estimators for complete or right-censored data used in conjunction with imputation methods, namely the Nadaraya-Watson and generalized Kaplan-Meier estimators. We study the finite sample integrated mean squared error properties of all these estimators by simulation and compare them to a semi-parametric estimator. We propose a rule-of-thumb based on simple sample summary statistics to choose the most appropriate among these estimators in practice.
Keywords: Generalized; Kaplan-Meier; estimator; Generalized; Turnbull; estimator; Kernel; weights; Midpoint; imputation; Multiple; imputation; Nadaraya-Watson; estimator; Self-consistency (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947311002441
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:12:p:3355-3364
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().