EconPapers    
Economics at your fingertips  
 

Generating generalized inverse Gaussian random variates by fast inversion

Josef Leydold and Wolfgang Hörmann

Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 213-217

Abstract: The inversion method for generating non-uniformly distributed random variates is a crucial part in many applications of Monte Carlo techniques, e.g., when low discrepancy sequences or copula based models are used. Unfortunately, closed form expressions of quantile functions of important distributions are often not available. The (generalized) inverse Gaussian distribution is a prominent example. It is shown that algorithms that are based on polynomial approximation are well suited for this distribution. Their precision is close to machine precision and they are much faster than root finding methods like the bisection method that has been recently proposed.

Keywords: Generalized; inverse; Gaussian; distribution; Random; variate; generation; Numerical; inversion (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00284-7
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:213-217

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:213-217