EconPapers    
Economics at your fingertips  
 

The hierarchical-likelihood approach to autoregressive stochastic volatility models

Woojoo Lee, Johan Lim, Youngjo Lee and Joan del Castillo

Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 248-260

Abstract: Many volatility models used in financial research belong to a class of hierarchical generalized linear models with random effects in the dispersion. Therefore, the hierarchical-likelihood (h-likelihood) approach can be used. However, the dimension of the Hessian matrix is often large, so techniques of sparse matrix computation are useful to speed up the procedure of computing the inverse matrix. Using numerical studies we show that the h-likelihood approach gives better long-term prediction for volatility than the existing MCMC method, while the MCMC method gives better short-term prediction. We show that the h-likelihood approach gives comparable estimations of fixed parameters to those of existing methods.

Keywords: Autoregressive; stochastic; volatility; model; Hierarchical; generalized; linear; model; Hierarchical; likelihood; Sparse; matrix; computation; Prediction (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00159-3
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:248-260

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:248-260