A fast procedure for calculating importance weights in bootstrap sampling
Hua Zhou and
Kenneth Lange
Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 26-33
Abstract:
Importance sampling is an efficient strategy for reducing the variance of certain bootstrap estimates. It has found wide applications in bootstrap quantile estimation, proportional hazards regression, bootstrap confidence interval estimation, and other problems. Although estimation of the optimal sampling weights is a special case of convex programming, generic optimization methods are frustratingly slow on problems with large numbers of observations. For instance, interior point and adaptive barrier methods must cope with forming, storing, and inverting the Hessian of the objective function. In this paper, we present an efficient procedure for calculating the optimal importance weights and compare its performance to standard optimization methods on a representative data set. The procedure combines several potent ideas for large-scale optimization.
Keywords: Importance; resampling; Bootstrap; Majorization; Quasi-Newton; acceleration (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00164-7
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:26-33
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().