EconPapers    
Economics at your fingertips  
 

Mapping electron density in the ionosphere: A principal component MCMC algorithm

Eman Khorsheed, Merrilee Hurn and Christopher Jennison

Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 338-352

Abstract: The outer layers of the Earth's atmosphere are known as the ionosphere, a plasma of free electrons and positively charged atomic ions. The electron density of the ionosphere varies considerably with time of day, season, geographical location and the sun's activity. Maps of electron density are required because local changes in this density can produce inaccuracies in the Navy Navigation Satellite System (NNSS) and Global Positioning System (GPS). Satellite to ground based receiver measurements produce tomographic information about the density in the form of path integrated snapshots of the total electron content which must be inverted to generate electron density maps. A Bayesian approach is proposed for solving the inversion problem using spatial priors in a parsimonious model for the variation of electron density with height. The Bayesian approach to modelling and inference provides estimates of electron density along with a measure of uncertainty for these estimates, leading to credible intervals for all quantities of interest. The standard parameterisation does not lend itself well to standard Metropolis-Hastings algorithms. A much more efficient form of Markov chain Monte Carlo sampler is developed using a transformation of variables based on a principal components analysis of initial output.

Keywords: Bayesian; modelling; Ionospheric; mapping; Inversion; Markov; chain; Monte; Carlo; Principal; components; Tomography (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00188-X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:338-352

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:338-352