EconPapers    
Economics at your fingertips  
 

Some exact tests for manifest properties of latent trait models

Jan G. Gooijer and Ao Yuan

Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 34-44

Abstract: Item response theory is one of the modern test theories with applications in educational and psychological testing. Recent developments made it possible to characterize some desired properties in terms of a collection of manifest ones, so that hypothesis tests on these traits can, in principle, be performed. But the existing test methodology is based on asymptotic approximation, which is impractical in most applications since the required sample sizes are often unrealistically huge. To overcome this problem, a class of tests is proposed for making exact statistical inference about four manifest properties: covariances given the sum are non-positive (CSN), manifest monotonicity (MM), conditional association (CA), and vanishing conditional dependence (VCD). One major advantage is that these exact tests do not require large sample sizes. As a result, tests for CSN and MM can be routinely performed in empirical studies. For testing CA and VCD, the exact methods are still impractical in most applications, due to the unusually large number of parameters to be tested. However, exact methods are still derived for them as an exploration toward practicality. Some numerical examples with applications of the exact tests for CSN and MM are provided.

Keywords: Conditional; distribution; Exact; test; Monte; Carlo; Markov; chain; Monte; Carlo (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00167-2
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:34-44

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:34-44