EconPapers    
Economics at your fingertips  
 

Quadratic approximation on SCAD penalized estimation

Sunghoon Kwon, Hosik Choi and Yongdai Kim

Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 421-428

Abstract: In this paper, we propose a method of quadratic approximation that unifies various types of smoothly clipped absolute deviation (SCAD) penalized estimations. For convenience, we call it the quadratically approximated SCAD penalized estimation (Q-SCAD). We prove that the proposed Q-SCAD estimator achieves the oracle property and requires only the least angle regression (LARS) algorithm for computation. Numerical studies including simulations and real data analysis confirm that the Q-SCAD estimator performs as efficient as the original SCAD estimator.

Keywords: Penalized; approach; Quadratic; approximation; SCAD; Variable; selection (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00196-9
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:421-428

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:421-428