EconPapers    
Economics at your fingertips  
 

Inference in HIV dynamics models via hierarchical likelihood

D. Commenges, D. Jolly, J. Drylewicz, H. Putter and R. Thiébaut

Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 446-456

Abstract: HIV dynamical models are often based on non-linear systems of ordinary differential equations (ODE), which do not have an analytical solution. Introducing random effects in such models leads to very challenging non-linear mixed-effects models. To avoid the numerical computation of multiple integrals involved in the likelihood, a hierarchical likelihood (h-likelihood) approach, treated in the spirit of a penalized likelihood is proposed. The asymptotic distribution of the maximum h-likelihood estimators (MHLE) for fixed effects is given. The MHLE are slightly biased but the bias can be made negligible by using a parametric bootstrap procedure. An efficient algorithm for maximizing the h-likelihood is proposed. A simulation study, based on a classical HIV dynamical model, confirms the good properties of the MHLE. The method is applied to the analysis of a clinical trial.

Keywords: Algorithm; Asymptotic; Differential; equations; h-likelihood; HIV; dynamics; models; Non-linear; mixed; effects; model; Penalized; likelihood (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00213-6
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:446-456

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:446-456