Model-based classification via mixtures of multivariate t-distributions
Jeffrey L. Andrews,
Paul D. McNicholas and
Sanjeena Subedi
Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 520-529
Abstract:
A novel model-based classification technique is introduced based on mixtures of multivariate t-distributions. A family of four mixture models is defined by constraining, or not, the covariance matrices and the degrees of freedom to be equal across mixture components. Parameters for each of the resulting four models are estimated using a multicycle expectation-conditional maximization algorithm, where convergence is determined using a criterion based on the Aitken acceleration. A straightforward, but very effective, technique for the initialization of the unknown component memberships is introduced and compared with a popular, more sophisticated, initialization procedure. This novel four-member family is applied to real and simulated data, where it gives good classification performance, even when compared with more established techniques.
Keywords: Classification; Food; authenticity; Mixture; models; Model-based; classification; Multivariate; t-distributions (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00220-3
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:520-529
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().