Error rates for multivariate outlier detection
Andrea Cerioli and
Alessio Farcomeni
Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 544-553
Abstract:
Multivariate outlier identification requires the choice of reliable cut-off points for the robust distances that measure the discrepancy from the fit provided by high-breakdown estimators of location and scatter. Multiplicity issues affect the identification of the appropriate cut-off points. It is described how a careful choice of the error rate which is controlled during the outlier detection process can yield a good compromise between high power and low swamping, when alternatives to the Family Wise Error Rate are considered. Multivariate outlier detection rules based on the False Discovery Rate and the False Discovery Exceedance criteria are proposed. The properties of these rules are evaluated through simulation. The rules are then applied to real data examples. The conclusion is that the proposed approach provides a sensible strategy in many situations of practical interest.
Keywords: False; discovery; rate; False; discovery; exceedance; Multiple; outliers; Reweighted; MCD; Masking; and; swamping (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00222-7
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:544-553
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().