EconPapers    
Economics at your fingertips  
 

A weighted quantile regression for randomly truncated data

Weihua Zhou

Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 554-566

Abstract: Quantile regression offers great flexibility in assessing covariate effects on the response. In this article, based on the weights proposed by He and Yang (2003), we develop a new quantile regression approach for left truncated data. Our method leads to a simple algorithm that can be conveniently implemented with R software. It is shown that the proposed estimator is strongly consistent and asymptotically normal under appropriate conditions. We evaluate the finite sample performance of the proposed estimators through extensive simulation studies.

Keywords: Weighted; quantile; regression; Truncated; data; Consistency; Asymptotic; normality (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00223-9
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:554-566

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:554-566