A note on mean-field variational approximations in Bayesian probit models
Artin Armagan and
Russell L. Zaretzki
Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 641-643
Abstract:
We correct some conclusions presented by Consonni and Marin (2007) on the performance of mean-field variational approximations to Bayesian inferences in the case of a simple probit model. We show that some of their presentations are misleading and thus their results do not fairly present the performance of such approximations in terms of point estimation under the specified model.
Keywords: Variational; inference; Bayesian; probit; model; Gibbs; sampling (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00249-5
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:641-643
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().