A new and practical influence measure for subsets of covariance matrix sample principal components with applications to high dimensional datasets
Luke A. Prendergast and
Connie Li Wai Suen
Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 752-764
Abstract:
Principal Component Analysis (PCA) is an important tool in multivariate analysis, in particular when faced with high dimensional data. There has been much done with regard to sensitivity analysis and the development of influence diagnostics for the eigenvector estimators that define the sample principal components. However, little, if any, has been done in this setting with regard to the sample principal components themselves. In this paper we develop a sensitivity measure for principal components associated with the covariance matrix that is very much related to the influence function (Hampel, 1974). This influence measure is based on the average squared canonical correlation and differs from the existing measures in that it assesses the influence of certain observational types on the sample principal components. We use this measure to derive an influence diagnostic that satisfies two key criteria being (i) it detects influential observations with respect to subsets of sample principal components and (ii) is efficient to calculate even in high dimensions. We use several microarray datasets to show that our measure satisfies both criteria.
Keywords: Canonical; correlations; Influence; function; Influential; observations; Microarray; data; Principal; component; analysis (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00267-7
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:752-764
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().