EconPapers    
Economics at your fingertips  
 

A latent class selection model for nonignorably missing data

Hyekyung Jung, Joseph L. Schafer and Byungtae Seo

Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 802-812

Abstract: When we have data with missing values, the assumption that data are missing at random is very convenient. It is, however, sometimes questionable because some of the missing values could be strongly related to the underlying true values. We introduce methods for nonignorable multivariate missing data, which assume that missingness is related to the variables in question, and to the additional covariates, through a latent variable measured by the missingness indicators. The methodology developed here is useful for investigating the sensitivity of one's estimates to untestable assumptions about the missing-data mechanism. A simulation study and data analysis are conducted to evaluate the performance of the proposed method and to compare to that of MAR-based alternatives.

Keywords: Nonignorable; missing; Multiple; imputation; Latent; class; model (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00274-4
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:802-812

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:802-812