EconPapers    
Economics at your fingertips  
 

Floating prioritized subset analysis: A powerful method to detect differentially expressed genes

Wan-Yu Lin and Wen-Chung Lee

Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 903-913

Abstract: Controlling the false discovery rate (FDR) is a powerful approach to deal with a large number of hypothesis tests, such as in gene expression data analyses and genome-wide association studies. To further boost power, here we propose a floating prioritized subset analysis (floating PSA) that can more effectively use prior knowledge and detect more genes that are differentially expressed. Genes are first allocated into two subsets: a prioritized subset and a non-prioritized subset, according to investigators' prior biological knowledge. We allow the FDRs of the two subsets to vary freely (to float) but aim to control the overall FDR at a desired level. An algorithm for the floating PSA is developed to detect the largest number of true positives. Theoretical justifications of the algorithm are given, and computer simulation studies show that the method has good statistical properties. We apply this method to detect genes that are differentially expressed between acute lymphoblastic leukemia and acute myeloid leukemia patients. The result shows that our floating PSA identifies 32 more genes (permutation-based FDR=0.0427) than the conventional (fixed) FDR control. Another example is a colon cancer study, and our floating PSA identifies 43 more genes (permutation-based FDR=0.0502). The floating PSA method is to be recommended for the detection of differentially expressed genes, in light of its power, robustness, and ease of implementation.

Keywords: False; discovery; rate; Gene; expression; Microarray; Multiple; comparisons; Multiple; hypothesis; testing; Simultaneous; inference (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00310-5
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:903-913

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:1:p:903-913