The joint model of the logistic model and linear random effect model -- An application to predict orthostatic hypertension for subacute stroke patients
Yi-Ting Hwang,
Hao-Yun Tsai,
Yeu-Jhy Chang,
Hsun-Chih Kuo and
Chun-Chao Wang
Computational Statistics & Data Analysis, 2011, vol. 55, issue 1, 914-923
Abstract:
Stroke is a common acute neurologic and disabling disease. Orthostatic hypertension (OH) is one of the catastrophic cardiovascular conditions. If a stroke patient has OH, he/she has higher chance to fall or syncope during the following courses of treatment. This can result in possible bone fracture and the burden of medical cost therefore increases. How to early diagnose OH is clinically important. However, there is no obvious time-saving method for clinical evaluation except to check the postural blood pressure. This paper uses clinical data to identify potential clinical factors that are associated with OH. The data include repeatedly observed blood pressure, and the patient's basic characteristics and clinical symptoms. A traditional logistic regression is not appropriate for such data. The paper modifies the two-stage model proposed by Tsiatis et al. (1995) and the joint model proposed by Wulfsohn and Tsiatis (1997) to take into account of a sequence of repeated measures to predict OH. The large sample properties of estimators of modified models are derived. Monte Carlo simulations are performed to evaluate the accuracy of these estimators. A case study is presented.
Keywords: Orthostatic; hypotension; Joint; model; Logistic; regression; Random; effect; model; Two; stage; model; Stroke (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00311-7
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:1:p:914-923
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().