On nonlinear regression estimator with denoised variables
Hengjian Cui and
Tao Hu
Computational Statistics & Data Analysis, 2011, vol. 55, issue 2, 1137-1149
Abstract:
In this paper, a class of denoised nonlinear regression estimators is suggested for a nonlinear measurement error model where the variables in error are observed together with an auxiliary variable. The programming involved in this denoised nonlinear regression estimation is relatively simple and it can be modified with a little effort from the existing programs for nonlinear regression estimation. We establish the consistency and asymptotic normality of such denoised estimators based on the least squares and M-methods. A simulation study is carried out to illustrate the performance of these estimates. An empirical application of the model to production models in economics further demonstrates the potential of the proposed modeling procedures.
Keywords: Denoising; Errors-in-variables; Kernel; Nonlinear; regression; model; Measurement; error; Smoothing (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00354-3
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:2:p:1137-1149
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().