Stepwise local influence analysis
Lei Shi and
Mei Huang
Computational Statistics & Data Analysis, 2011, vol. 55, issue 2, 973-982
Abstract:
A new method called stepwise local influence analysis is proposed to detect influential observations and to identify masking effects in a dataset. Influential observations are detected step-by-step such that any highly influential observations identified in a previous step are removed from the perturbation in the next step. The process iterates until no further influential observations can be found. It is shown that this new method is very effective to identify the influential observations and has the power to uncover the masking effects. Additionally, the issues of constraints on perturbation vectors and bench-mark determination are discussed. Several examples with regression models and linear mixed models are illustrated for the proposed methodology.
Keywords: Local; influence; analysis; Influential; observations; Subset; perturbation; scheme; Masking; effects (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00316-6
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:2:p:973-982
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().