EconPapers    
Economics at your fingertips  
 

Joint estimation of mean-covariance model for longitudinal data with basis function approximations

Jie Mao, Zhongyi Zhu and Wing K. Fung

Computational Statistics & Data Analysis, 2011, vol. 55, issue 2, 983-992

Abstract: When the selected parametric model for the covariance structure is far from the true one, the corresponding covariance estimator could have considerable bias. To balance the variability and bias of the covariance estimator, we employ a nonparametric method. In addition, as different mean structures may lead to different estimators of the covariance matrix, we choose a semiparametric model for the mean so as to provide a stable estimate of the covariance matrix. Based on the modified Cholesky decomposition of the covariance matrix, we construct the joint mean-covariance model by modeling the smooth functions using the spline method and estimate the associated parameters using the maximum likelihood approach. A simulation study and a real data analysis are conducted to illustrate the proposed approach and demonstrate the flexibility of the suggested model.

Keywords: Basis; function; BIC; B-splines; Modified; Cholesky; decomposition; Partially; linear; model (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00318-X
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:2:p:983-992

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:2:p:983-992