Indirect density estimation using the iterative Bayes algorithm
Jun Ma
Computational Statistics & Data Analysis, 2011, vol. 55, issue 3, 1180-1195
Abstract:
Many practical problems involve density estimation from indirect observations and they are classified as indirect density estimation problems. For example, image deblurring and image reconstruction in emission tomography belong to this class. In this paper we propose an iterative approach to solve these problems. This approach has been successfully applied to emission tomography (Ma, 2008). The popular EM algorithm can also be used for indirect density estimation, but it requires that observations follow Poisson distributions. Our method does not involve such assumptions; rather, it is established simply from the Bayes conditional probability model and is termed the Iterative Bayes (IB) algorithm. Under certain regularity conditions, this algorithm converges to the positively constrained solution minimizing the Kullback-Leibler distance, an asymmetric measure involving both logarithmic and linear scales of dissimilarities between two probability distributions.
Keywords: Iterative; Bayes; Indirect; observations; Density; estimation; EM; algorithm; Kullback-Leibler; measure (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00361-0
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:3:p:1180-1195
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().