Efficient maximum likelihood estimation of copula based meta t-distributions
Ran Zhang,
Claudia Czado and
Aleksey Min
Computational Statistics & Data Analysis, 2011, vol. 55, issue 3, 1196-1214
Abstract:
Recently an efficient fixed point algorithm, called maximization by parts (MBP), for finding maximum likelihood estimates has been applied to models based on Gaussian copulas. It requires a decomposition of a likelihood function into two parts and their iterative maximization by solving score equations. For the first time, the MBP algorithm is applied to multivariate meta t-distributions based on t-copulas. Since score equations for meta t-distributions do not have closed forms the proposed MBP algorithm in two variations maximizes the decomposed parts of the likelihood iteratively. Superiority of the proposed MBP algorithm over standard estimation methods such as inference for margins and direct maximization is illustrated in a simulation study. The usefulness of the proposed algorithm is shown in two data applications.
Keywords: Copula; Inference; for; margins; Maximum; likelihood; estimation; Maximization; by; parts; Meta-t; distribution; Rolling; windows (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00370-1
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:3:p:1196-1214
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().