EconPapers    
Economics at your fingertips  
 

Analyzing dependent proportions in cluster randomized trials: Modeling inter-cluster correlation via copula function

Mohamed M. Shoukri, Pranesh Kumar and Dilek Colak

Computational Statistics & Data Analysis, 2011, vol. 55, issue 3, 1226-1235

Abstract: When two interventions are randomized to multiple sub-clusters within a whole cluster, accounting for the within sub-cluster (intra-cluster) and between sub-clusters (inter-cluster) correlations is needed to produce valid analyses of the effect of interventions. With the growing interest in copulas and their applications in statistical research, we demonstrate, through applications, how copula functions may be used to account for the correlation among responses across sub-clusters. Copulas having asymmetric dependence property may prove useful for modeling the relationship between random functions especially in clinical, health and environmental sciences where response data are in general skewed. These functions can in general be used to study scale-free measures of dependence, and they can be used as a starting point for constructing families of bivariate distributions, with a view to simulations. The core contribution of this paper is to provide an alternative approach for estimating the inter-cluster correlation using copula to accurately estimate the treatment effect when the outcome variable is measured on the dichotomous scale. Two data sets are used to illustrate the proposed methodology.

Keywords: Cluster; randomization; Correlated; proportion; Beta; binomial; distribution; Copula; function (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00325-7
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:3:p:1226-1235

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:55:y:2011:i:3:p:1226-1235