Bayesian semiparametric modeling of survival data based on mixtures of B-spline distributions
Bo Cai and
Renate Meyer
Computational Statistics & Data Analysis, 2011, vol. 55, issue 3, 1260-1272
Abstract:
The nonparametric part of a semiparametric regression model usually involves prior specification for an infinite-dimensional parameter F. This paper introduces a class of finite mixture models based on B-spline distributions as an approximation to priors on the set of cumulative distribution functions. This class includes the mixture of beta distributions of Diaconis and Ylvisaker (1985) and the mixtures of triangular distributions of Perron and Mengersen (2001) as special cases. We describe how this approach can be used to model the baseline hazards in a Bayesian stratified proportional hazards model. A numerical illustration is given using survival data from a multicenter clinical AIDS trial, thus generalizing the approach by Carlin and Hodges (1999). Using conditional predictive ordinates and the deviance information criterion, we compare the fit of hierarchical proportional hazards regression models based on mixtures of B-spline distributions of various degrees.
Keywords: Baseline; hazard; function; Bayesian; semiparametric; model; B-splines; Mixture; model; Stratified; data (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00350-6
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:3:p:1260-1272
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().