Simulation-based two-stage estimation for multiple nonparametric regression
Lu Lin,
Qi Zhang,
Feng Li and
Xia Cui
Computational Statistics & Data Analysis, 2011, vol. 55, issue 3, 1367-1378
Abstract:
To reduce the curse of dimensionality arising from nonparametric estimation procedures for multiple nonparametric regression, in this paper we suggest a simulation-based two-stage estimation. We first introduce a simulation-based method to decompose the multiple nonparametric regression into two parts. The first part can be estimated with the parametric convergence rate and the second part is small enough so that it can be approximated by orthogonal basis functions with a small trade-off parameter. Then the linear combination of the first and second step estimators results in a two-stage estimator for the multiple regression function. Our method does not need any specified structural assumption on the regression function and it is proved that the newly proposed estimation is always consistent even if the trade-off parameter is designed to be small. Thus when the common nonparametric estimator such as local linear smoothing collapses because of the curse of dimensionality, our estimator still works well.
Keywords: Multiple; nonparametric; regression; Simulation-based; method; Two-stage; estimation; Convergence; rate (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00369-5
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:3:p:1367-1378
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().