Bias and skewness in a general extreme-value regression model
Wagner Barreto-Souza and
Klaus L.P. Vasconcellos
Computational Statistics & Data Analysis, 2011, vol. 55, issue 3, 1379-1393
Abstract:
In this paper we introduce a general extreme-value regression model and derive Cox and Snell's (1968) general formulae for second-order biases of maximum likelihood estimates (MLEs) of the parameters. We obtain formulae which can be computed by means of weighted linear regressions. Furthermore, we give the skewness of order n-1/2 of the maximum likelihood estimators of the parameters by using Bowman and Shenton's (1988) formula. A simulation study with results obtained with the use of Cox and Snell's (1968) formulae is discussed. Practical uses of this model and of the derived formulae for bias correction are also presented.
Keywords: Extreme-value; regression; model; Dispersion; covariates; Maximum; likelihood; estimates; Bias; correction; Skewness (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00371-3
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:3:p:1379-1393
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().