Fast computation of high-dimensional multivariate normal probabilities
Ioannis Phinikettos and
Axel Gandy
Computational Statistics & Data Analysis, 2011, vol. 55, issue 4, 1521-1529
Abstract:
A new efficient method is proposed to compute multivariate normal probabilities over rectangles in high dimensions. The method exploits four variance reduction techniques: conditional Monte Carlo, importance sampling, splitting and control variates. Simulation results are presented that evaluate the performance of the new proposed method. The new method is designed for computing small exceedance probabilities.
Keywords: Multivariate; normal; distribution; Monte; Carlo; methods; Singular; values (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167-9473(10)00379-8
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:55:y:2011:i:4:p:1521-1529
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().